
cryptal
Release latest-e1b9d37

Sep 29, 2018

Contents

1 Introduction 3

2 Installation 5
2.1 Choosing the plugin(s) to install . 5

2.1.1 Modes of operation . 6
2.1.2 Cipher algorithms . 7
2.1.3 Hashing algorithms . 8
2.1.4 Message authentication algorithms . 8

2.2 Installing the plugins . 8

3 Usage 9
3.1 Encryption/decryption . 10

3.1.1 Using stream filters . 10
3.1.2 Using the registry . 13

3.2 Hashes (message digests) . 14
3.2.1 Using stream filters . 14
3.2.2 Using the registry . 15

3.3 Message Authentication Codes (MAC) . 16
3.3.1 Using stream filters . 16
3.3.2 Using the registry . 18

3.4 Miscelleanous features . 19

4 Implementers 21
4.1 Guidelines . 21
4.2 Creating a new plugin . 21

4.2.1 Update your composer.json file . 21
4.2.2 Write the code for the entry point . 22

4.3 Available plugins . 23

i

ii

cryptal, Release latest-e1b9d37

Cryptal is a Cryptography Abstraction Layer for PHP.

Warning: This documentation was automatically built from the latest changes in GitHub. It does not necessar-
ily reflect features from any current or upcoming release. Check out https://readthedocs.org/projects/cryptal/ for
documentation on supported versions.

This project is comprised of a unified API, which serves as an abstraction layer for various cryptographic libraries,
and plugins which add support for the various cryptography primitives.

You can find additional information about this project on the following websites:

• Source repository

• Continuous Integration

• API documentation

Contents:

Contents 1

https://github.com/fpoirotte/cryptal/commit/e1b9d372c9d9d5438f2fd334784e98b36af927dc
https://readthedocs.org/projects/cryptal/
https://github.com/fpoirotte/cryptal/
http://travis-ci.org/fpoirotte/cryptal

cryptal, Release latest-e1b9d37

2 Contents

CHAPTER 1

Introduction

There are several extensions & libraries that provide cryptography primitives for PHP:

• the legacy mcrypt extension

• the OpenSSL extension

• the libsodium extension

• the tomcrypt extension

• probably others I don’t know about. . .

Although these extensions all provide roughtly the same features, the programmatic interface they expose is very
different.

Also, very few of those extensions support on-the-fly encryption/decryption.

Cryptal was created to work around these issues by providing a unified interface & transparent support for on-the-fly
encryption/decryption using stream filters.

3

http://php.net/mcrypt
http://php.net/openssl
https://github.com/jedisct1/libsodium-php
https://github.com/fpoirotte/tomcrypt

cryptal, Release latest-e1b9d37

4 Chapter 1. Introduction

CHAPTER 2

Installation

Cryptal relies on Composer for its installation. It also uses plugins to provide implementations for the various algo-
rithms.

Cryptal can be installed by itself using the following command:

$ php composer.php require fpoirotte/cryptal

However, the core package only provides a few algorithms using mostly PHP code. Therefore, you will usually want
to install additional plugins to get access to more algorithms.

Which plugin to install depends on the algorithms you need to use and whether you’re willing to sacrifice a bit of
speed and security to get additionnal algorithms.

Cryptal supports 3 types of implementations:

• Assembly code, which provides maximum speed and is usually secure.

• Compiled code, which can be a tiny bit slower, but is often more secure.

• PHP code, which is slower and less secure, but provides support for some niche algorithms.

2.1 Choosing the plugin(s) to install

The following tables list the algorithms provided by each plugin, with their implementation type. “Core” means the
algorithm is provided by the Cryptal package itself and does not require any additional plugin to work.

Please note that these lists are only given as an indication of what the underlying library supports. The actual supported
algorithms may vary due to differing compilation options or differing versions being used.

5

https://getcomposer.org/
https://packagist.org/providers/fpoirotte/cryptal-implementation

cryptal, Release latest-e1b9d37

2.1.1 Modes of operation

Algorithm Core Mcrypt OpenSSL LibTomCrypt LibSodium Hash PHP-Crypto
CBC PHP code compiled compiled compiled n/a n/a compiled
CCM PHP code n/a compiled1 compiled n/a n/a compiled
CFB PHP code compiled compiled compiled n/a n/a compiled
CTR PHP code compiled compiled1 compiled n/a n/a compiled
EAX PHP code n/a n/a compiled n/a n/a n/a
ECB PHP code compiled compiled compiled n/a n/a compiled
GCM PHP code n/a compiled1 compiled compiled2 n/a compiled
OCB PHP code n/a compiled1 compiled n/a n/a n/a
OFB PHP code compiled compiled compiled n/a n/a compiled

1 Availability is highly dependent on OpenSSL version, hardware, compilation options and selected cipher. Your mileage may vary.
2 libsodium only supports AES-256 in GCM mode. Also, this cipher/mode combination is not available unless the processor of the machine

running the code has support for the AES-NI instruction set.

6 Chapter 2. Installation

cryptal, Release latest-e1b9d37

2.1.2 Cipher algorithms

Algorithm Core Mcrypt OpenSSL LibTom-
Crypt

Lib-
Sodium

Hash PHP-
Crypto

TripleDES (3DES) n/a com-
piled

com-
piled

compiled n/a n/a compiled

AES-128 n/a com-
piled

com-
piled

compiled n/a n/a compiled

AES-192 n/a com-
piled

com-
piled

compiled n/a n/a compiled

AES-256 n/a com-
piled

com-
piled

compiled com-
piled2

n/a compiled

Blowfish n/a com-
piled

com-
piled

compiled n/a n/a compiled

Camellia-128 PHP
code

n/a com-
piled

compiled34 n/a n/a compiled

Camellia-192 PHP
code

n/a com-
piled

compiled34 n/a n/a compiled

Camellia-256 PHP
code

n/a com-
piled

compiled34 n/a n/a compiled

CAST5 n/a com-
piled

com-
piled

compiled n/a n/a compiled

ChaCha20 (IETF variant) PHP
code

n/a n/a compiled34 compiled n/a n/a

ChaCha20 (OpenSSH
variant)

PHP
code

n/a n/a n/a n/a n/a n/a

DES n/a com-
piled

com-
piled

compiled n/a n/a compiled

RC2 n/a com-
piled

com-
piled

compiled n/a n/a compiled

RC4 n/a com-
piled

com-
piled

compiled34 n/a n/a compiled

SEED n/a n/a com-
piled

compiled n/a n/a compiled

Twofish n/a com-
piled

n/a compiled n/a n/a compiled

3 Requires version 1.18 or later of LibTomCrypt.
4 Requires version 0.3.0 or later of the PHP tomcrypt extension.

2.1. Choosing the plugin(s) to install 7

cryptal, Release latest-e1b9d37

2.1.3 Hashing algorithms

Algorithm Core Mcrypt OpenSSL LibTomCrypt LibSodium Hash PHP-Crypto
MD2 n/a n/a compiled compiled n/a compiled compiled
MD4 n/a n/a compiled compiled n/a compiled compiled
MD5 compiled n/a compiled compiled n/a compiled compiled
RIPEMD160 n/a n/a compiled compiled n/a compiled compiled
SHA1 compiled n/a compiled compiled n/a compiled compiled
SHA224 n/a n/a compiled compiled n/a compiled compiled
SHA256 n/a n/a compiled compiled n/a compiled compiled
SHA384 n/a n/a compiled compiled n/a compiled compiled
SHA512 n/a n/a compiled compiled n/a compiled compiled

2.1.4 Message authentication algorithms

Algorithm Core Mcrypt OpenSSL LibTomCrypt LibSodium Hash PHP-Crypto
CMAC PHP code n/a n/a compiled n/a n/a compiled
HMAC n/a n/a n/a compiled n/a compiled compiled
Poly1305 PHP code n/a n/a compiled34 n/a n/a n/a
UMAC-32 PHP code n/a n/a n/a n/a n/a n/a
UMAC-64 PHP code n/a n/a n/a n/a n/a n/a
UMAC-92 PHP code n/a n/a n/a n/a n/a n/a
UMAC-128 PHP code n/a n/a compiled n/a n/a n/a

2.2 Installing the plugins

Once you have determined the algorithms you are going to use and the plugins providing these algorithms that you
want to use, execute the following commands to install the appropriate plugins:

$ # Plugin based on the old Mcrypt PHP extension (PHP <= 7.1)
$ php composer.php require fpoirotte/cryptal-mcrypt
$
$ # Plugin based on the OpenSSL PHP extension
$ php composer.php require fpoirotte/cryptal-openssl
$
$ # Plugin based on the LibTomCrypt PHP extension
$ php composer.php require fpoirotte/cryptal-tomcrypt
$
$ # Plugin based on the new LibSodium PHP extension (PHP >= 7.2)
$ php composer.php require fpoirotte/cryptal-sodium
$
$ # Plugin based on the Hash PHP extension
$ php composer.php require fpoirotte/cryptal-hash
$
$ # Plugin based on the PHP-Crypto extension
$ php composer.php require fpoirotte/cryptal-php-crypto

8 Chapter 2. Installation

CHAPTER 3

Usage

Cryptal provides support for the following main features:

• Encryption/decryption

• Hashes (also known as message digests)

• Message Authentication Codes

For each feature, two sets of interfaces are provided:

• PHP stream filters, which hide the complexity of the operations and provide transparent support for the features.

This mode of operation is usually adequate for network protocols or when manipulating large files that would
not fit into memory.

• Regular PHP interfaces that describe available operations, as well as a central Registry to help look up for
an actual implementation of some algorithm.

This mode is usually adequate when working with in-memory strings and small files.

The rest of this document describes the interfaces available for each feature.

• Encryption/decryption

– Using stream filters

* Encryption

* Decryption

* Filter parameters for cryptal.encrypt/cryptal.decrypt

* Padding

– Using the registry

• Hashes (message digests)

– Using stream filters

9

cryptal, Release latest-e1b9d37

* Replicating md5_file() using Cryptal

* Filter parameters for cryptal.hash

– Using the registry

• Message Authentication Codes (MAC)

– Using stream filters

* Quick example: HMAC-MD5 on a file

* Filter parameters for cryptal.mac

– Using the registry

• Miscelleanous features

3.1 Encryption/decryption

3.1.1 Using stream filters

Warning: When using the stream filters, the library relies mostly on PHP code to handle encryption/decryption.
The underlying library is only used to provide the cryptographic primitives for the selected cipher in ECB mode.

This hurts performance a bit, but more importantly, this may diminish your application’s security, because some
values (keys, IVs, etc.) cannot be safely erased from memory and may linger there even after you are done
processing the data.

If you are concerned about these issues, do not use the stream filters.

Encryption

Encrypting data is easy:

// Initialize the library
\fpoirotte\Cryptal::init();

// Open a new stream
$stream = stream_socket_client('tcp://localhost:12345');

// Create an encryption context (see below)
$ctx = stream_context_create(

array(
'cryptal' => array(

// Secret key.
// Size must be compatible with the cipher's expectations.
'key' => '0123456789abcdef',

// Initialization Vector.
// Size must be compatible with the cipher's expectations.
'IV' => 'abcdef0123456789',

)
)

);

(continues on next page)

10 Chapter 3. Usage

https://en.wikipedia.org/wiki/Electronic_codebook

cryptal, Release latest-e1b9d37

(continued from previous page)

// Add an encryption layer to the stream.
$filter = stream_filter_append(

$stream,
'cryptal.encrypt',
// We want the data to be encrypted as we write it.
STREAM_FILTER_WRITE,
array(

// Encrypt the data using AES-128 in CTR mode.
'algorithm' => CipherEnum::CIPHER_AES_128(),
'mode' => ModeEnum::MODE_CTR(),

// Secret key.
// Size must be compatible with the cipher's expectations.
'key' => '0123456789abcdef',

// Initialization Vector.
// Size must be compatible with the cipher's expectations.
'iv' => 'abcdef0123456789',

)
);

// We make sure the filter was successfully applied.
if (false === $filter) {

throw new \Exception('Could not add the encryption layer');
}

// Now that the encryption layer is in place, we can write
// to the stream just like we would normally do.
// Any data written to the stream will be encrypted on the fly.
fwrite($stream, "Some secret message we want to transmit securely");

Warning: When adding the filter, the 3rd argument to stream_filter_append() ($read_write) should
be set to either STREAM_FILTER_WRITE if the encryption should happen during writes (eg. via fwrite()),
or STREAM_FILTER_READ if it should happen during reads (eg. via fread() or fgets()).

Using the default value (STREAM_FILTER_ALL) means the same filter is applied to both operations, which is
not supported and may produce unexpected results.

Here’s another example, this time using Authenticated Encryption with Associated Data (AEAD):

@TODO

Decryption

Decryption works the same way. Just substitute cryptal.decrypt in place of cryptal.encrypt when adding
the filter.

When using Authenticated Encryption, @TODO

3.1. Encryption/decryption 11

cryptal, Release latest-e1b9d37

Filter parameters for cryptal.encrypt/cryptal.decrypt

When using streams, the following options may be used when adding the filter to control the way encryption/decryption
is performed:

Table 1: Parameters for cryptal.encrypt/cryptal.decrypt
Name OptionalExpected type Description
mode yes \fpoirotte\Cryptal\ModeEnum The cipher’s mode of operations to use.

This parameter is important as the various modes offer
different security garantees. Make sure you have read
documentation on the various modes and their implica-
tions before setting this value.

algorithmyes \fpoirotte\Cryptal\CipherEnumThe cipher algorithm to use to encrypt/decrypt the data.
This parameter is important as the various ciphers offer
different security garantees. Make sure you have read
documentation on the various ciphers and their limita-
tions before setting this value.

allowUnsafeno boolean Whether userland PHP implementations may be used or
not. Defaults to false.
While those implementations add support for some
rarely used algorithms, they are usually way slower than
implementations based on PHP extensions.
Also, those implementations are considered unsafe be-
cause they cannot protect the application from certain
classes of attacks like PHP extensions usually do (eg.
side-channel attacks).
Last but not least, when using those implementations,
secret values may reside in memory for longer than is
actually necessary (possibly even longer than the pro-
gram’s actual execution time), making them vulnerable
to memory forensic techniques and such.

data no string Additional Data to authenticate when using Authenti-
cated Encryption

iv yes/nostring Initialization Vector for the cipher. Whether this pa-
rameter is optional or not depends of the encryp-
tion/decryption mode used.

key yes string Symmetric key to use for encryption/decryption
padding no \fpoirotte\Cryptal\PaddingInterfacePadding scheme to use. Defaults to no padding.
tag no string Authentication tag for the current block. This value is

set by the filter during encryption of a block. It should
be set manually when decrypting, before passing a block
to decrypt to the stream.

tagLengthno integer Desired tag length (in bytes) when using Authenticated
Encryption.
Defaults to 16 bytes (128 bits).
This parameters is only used during encryption, as it can
be deduced from the tag’s actual length when decrypt-
ing.

12 Chapter 3. Usage

https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption

cryptal, Release latest-e1b9d37

Padding

By default, no padding is applied to streams (ie. the padding scheme is set to an instance of
fpoirotte\Cryptal\Padding\None).

If you need to use another padding scheme, you can easily swap the default for an alternate implementation. Just set
the padding filter parameter to an instance of the padding scheme to use when adding the filter:

use fpoirotte\Cryptal\Padding\AnsiX923;

// Open the stream
$stream = fopen(..., 'wb');

stream_filter_append(
$stream,
'cryptal.encrypt',
STREAM_FILTER_WRITE,
array(

'key' => '0123456789abcdef',
'IV' => 'abcdef0123456789',
'algorithm' => CipherEnum::CIPHER_AES_128(),
'mode' => ModeEnum::MODE_CTR(),

// Use the ANSI X.923 padding scheme.
'padding' => new AnsiX923,

)
);

// Do something with the stream...

3.1.2 Using the registry

The following snippet shows how to retrieve an implementation of the AES cipher in ECB mode for encryp-
tion/decryption:

use \fpoirotte\Cryptal\Registry;
use \fpoirotte\Cryptal\Padding\None;
use \fpoirotte\Cryptal\CipherEnum;
use \fpoirotte\Cryptal\ModeEnum;

// Initialize the library
\fpoirotte\Cryptal::init();

// Retrieve an implementation for the chosen cipher & mode.
// See fpoirotte\Cryptal\CipherEnum and fpoirotte\Cryptal\ModeEnum
// for a list of valid ciphers/modes.
$impl = Registry::buildCipher(

CipherEnum::CIPHER_AES_128(), // Cipher to use
ModeEnum::MODE_ECB(), // Mode of operations
new None(), // Padding scheme
'0123456789abcdef' // Secret key
0, // Desired tag length (AEAD-only)
true // Whether using plain PHP code

// is okay (less secure/slower)
);

(continues on next page)

3.1. Encryption/decryption 13

cryptal, Release latest-e1b9d37

(continued from previous page)

// Generate an appropriate Initialization Vector
$iv = 'abcdef0123456789';

// Since no padding was used in this example, the plaintext's length
// must be a multiple of the cipher's block size. That's 16 bytes for AES.
// Use $impl->getBlockSize() if necessary to retrieve the block size.
$plaintext = "Some secret text";
var_dump(bin2hex($plaintext));

// Encrypt the data
$ciphertext = $impl->encrypt($iv, $plaintext);
var_dump(bin2hex($ciphertext));

// Decryption is just as easy
$decoded = $impl->decrypt($iv, $ciphertext);
var_dump(bin2hex($decoded));

Here’s another example, this time using Authenticated Encryption with Associated Data (AEAD):

@TODO

3.2 Hashes (message digests)

3.2.1 Using stream filters

Replicating md5_file() using Cryptal

Hashing data using streams is really easy. For example, to obtain an MD5 message digest for a file (similar to what
the PHP md5_file() function returns), the following snippet can be used:

// Initialize the library
\fpoirotte\Cryptal::init();

// Open the binary file for reading.
$fp = fopen("/path/to/some.data", "rb");

// Add the hashing filter to the stream.
stream_filter_append(

$fp,
'cryptal.hash',
// We want to compute the hash based on data read from the file.
STREAM_FILTER_READ,
array(

'algorithm' => HashEnum::HASH_MD5()
)

);

// Read the resulting message digest (returned in raw form).
// The MD5 algorithm produces a 128-bit hash (16 bytes).
$hash = stream_get_contents($fp);

14 Chapter 3. Usage

cryptal, Release latest-e1b9d37

Warning: When adding the filter, the 3rd argument to stream_filter_append() ($read_write) should
be set to either STREAM_FILTER_WRITE if the hashing should happen during writes (eg. via fwrite()), or
STREAM_FILTER_READ if it should happen during reads (eg. via fread() or fgets()).

Using the default value (STREAM_FILTER_ALL) means the same filter is applied to both operations, which is
not supported and may produce unexpected results.

Filter parameters for cryptal.hash

When using streams, the following options may be used when adding the filter to control the way the message digest
is computed:

Table 2: Parameters for cryptal.hash
Name OptionalExpected type Description
algorithmyes \fpoirotte\Cryptal\HashEnum The algorithm to use to hash the data.

This parameter is important as the various algorithms
offer different security garantees. Make sure you have
read documentation on the various algorithms and their
limitations before setting this value.

allowUnsafeno boolean Whether userland PHP implementations may be used or
not. Defaults to false.
While those implementations add support for some
rarely used algorithms, they are usually way slower than
implementations based on PHP extensions.
Also, those implementations are considered unsafe be-
cause they cannot protect the application from certain
classes of attacks like PHP extensions usually do (eg.
side-channel attacks).
Last but not least, when using those implementations,
secret values may reside in memory for longer than is
actually necessary (possibly even longer than the pro-
gram’s actual execution time), making them vulnerable
to memory forensic techniques and such.

3.2.2 Using the registry

Hashing data using the registry is easy too:

use \fpoirotte\Cryptal\Registry;
use \fpoirotte\Cryptal\HashEnum;

// Initialize the library
\fpoirotte\Cryptal::init();

// Grab an instance of the hash implementation.
// The last argument indicates whether implementations based on
// userland PHP code can be returned too.
// By default, they are not because they are usually slower and
// more prone to timing attacks.
$hasher = Registry;:buildHash(HashEnum::HASH_MD5(), true);

(continues on next page)

3.2. Hashes (message digests) 15

cryptal, Release latest-e1b9d37

(continued from previous page)

// Pass the data to hash to the implementation.
$hasher->update(file_get_contents("/path/to/some.data"));

// Retrieve the resulting hash.
// The argument given to finish() decides whether the hash
// should be returned in raw binary form (true) or not (false).
$hash = $hasher->finish(true);

3.3 Message Authentication Codes (MAC)

Compared to the previous features, message authentication codes can be a bit tricky to deal with. First, they actually
require 2 algorithms to work:

• One algorithm to process the input data (to compute intermediate values), called the “inner algorithm” hereafter.

• One algorithm to compute the final output (a message authentication code, also know as a tag), called the “outer
algorithm” in the rest of this section.

The algorithms’ names are usually combined to obtain a more descriptive (and unique) name for the whole construct.
So for example, “HMAC-MD5” is often used to refer to the HMAC outer algorithm applied to the MD5 hashing
algorithm.

But it gets trickier: the type of the first algorithm depends on the second one. Some “outer algorithms” (eg. HMAC)
expect a hashing algorithm as their “inner algorithm”. Some (eg. CMAC & UMAC) expect a cipher algorithm as their
“inner algorithm”. And finally, some (eg. Poly1305) do not use an inner algorithm at all. Some “outer algorithms”
also impose further limitations on the “inner algorithm” such as restrictions on the cipher’s block size for cipher-based
message authentication codes.

Last but not least, every combination of algorithms requires a secret key, known only by the two parties trying to
prevent any message tampering. A few algorithms also require what’s known as a “nonce”, to make the output less
predictable.

Before computing any MAC, we suggest that you first read some documentation about whatever algorithm you plan
on using and then learn about its specific requirements and limitations.

3.3.1 Using stream filters

Quick example: HMAC-MD5 on a file

To compute a MAC using the stream interface, just use code similar to this one:

// Initialize the library
\fpoirotte\Cryptal::init();

// Open the binary file for reading.
$macGiver = fopen("/path/to/some.data", "rb");

// Add the MAC filter to the stream.
stream_filter_append(

$macGiver,
'cryptal.mac',
// We want to compute the MAC based on data read from the file.
STREAM_FILTER_READ,

(continues on next page)

16 Chapter 3. Usage

cryptal, Release latest-e1b9d37

(continued from previous page)

array(
'algorithm' => MacEnum::MAC_HMAC(),
'innerAlgorithm' => HashEnum::HASH_MD5(),

// Size must be compatible with the algorithms in use.
'key' => '0123456789abcdef',

)
);

// Retrieve the Message Authentication Code in raw binary form.
// The HMAC-MD5 algorithm produces a 128-bit hash (16 bytes).
$mac = stream_get_contents($macGiver);

Warning: When adding the filter, the 3rd argument to stream_filter_append() ($read_write)
should be set to either STREAM_FILTER_WRITE if the tag computation should happen during writes (eg. via
fwrite()), or STREAM_FILTER_READ if it should happen during reads (eg. via fread() or fgets()).

Using the default value (STREAM_FILTER_ALL) means the same filter is applied to both operations, which is
not supported and may produce unexpected results.

Filter parameters for cryptal.mac

When using streams, the following options may be used when adding the filter to control the way the message authen-
tication code is computed:

3.3. Message Authentication Codes (MAC) 17

cryptal, Release latest-e1b9d37

Table 3: Parameters for cryptal.mac
Name OptionalExpected type Description
algorithmyes \fpoirotte\Cryptal\MacEnum Outer algorithm to use to perform the computation.

This parameter is important as the various algorithms
offer different security garantees. Make sure you have
read documentation on the various algorithms and their
limitations before setting this value.

innerAlgorithmyes \fpoirotte\Cryptal\SubAlgorithmAbstractEnumInner algorithm to use to perform the computation.
Depending on the selected algorithm, this
parameter should be set to either an instance
of \fpoirotte\Cryptal\CipherEnum or
\fpoirotte\Cryptal\HashEnum.
This parameter is important as the various algorithms
offer different security garantees. Make sure you have
read documentation on the various algorithms and their
limitations before setting this value.

allowUnsafeno boolean Whether userland PHP implementations may be used or
not. Defaults to false.
While those implementations add support for some
rarely used algorithms, they are usually way slower than
implementations based on PHP extensions.
Also, those implementations are considered unsafe be-
cause they cannot protect the application from certain
classes of attacks like PHP extensions usually do (eg.
side-channel attacks).
Last but not least, when using those implementations,
secret values may reside in memory for longer than is
actually necessary (possibly even longer than the pro-
gram’s actual execution time), making them vulnerable
to memory forensic techniques and such.

nonce yes/nostring Nonce to make the output less predictable. Whether
this parameter is optional or not depends on the selected
algorithm/innerAlgorithm.

key yes string Symmetric key to use for the computation

3.3.2 Using the registry

Computing a MAC using the registry is very similar to hashing:

use \fpoirotte\Cryptal\Registry;
use \fpoirotte\Cryptal\MacEnum;
use \fpoirotte\Cryptal\HashEnum;

// Initialize the library
\fpoirotte\Cryptal::init();

// Grab an instance of the MAC implementation.
// The last argument indicates whether implementations based on
// userland PHP code can be returned too.
// By default, they are not because they are usually slower and
// more prone to timing attacks.
$macGiver = Registry;:buildMac(

(continues on next page)

18 Chapter 3. Usage

cryptal, Release latest-e1b9d37

(continued from previous page)

MacEnum::MAC_HMAC(),
HashEnum::HASH_MD5(),
'0123456789abcdef', // Secret key
'', // Nonce, for algorithms that require one
true

);

// Pass the data to process to the implementation.
$macGiver->update(file_get_contents("/path/to/some.data"));

// Retrieve the resulting tag/MAC.
// The argument given to finish() decides whether the tag
// should be returned in raw binary form (true) or not (false).
$tag = $macGiver->finish(true);

3.4 Miscelleanous features

In addition to the ones listed above, Cryptal also provides the following filters:

• cryptal.binify can be used to convert an hexadecimal-encoded string into its binary counterpart on the fly
(eg. 4372797074616c→ Cryptal).

• cryptal.hexify does the reverse operation and can be used to convert a string into its hexadecimal repre-
sentation (eg. Cryptal→ 4372797074616c). It accepts a single option named uppercase. When set to
true, the filter will generate its output using uppercase characters instead of the (default) lowercase characters.

3.4. Miscelleanous features 19

cryptal, Release latest-e1b9d37

20 Chapter 3. Usage

CHAPTER 4

Implementers

This page contains guidelines for implementers.

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOM-
MENDED, MAY, and OPTIONAL in this document are to be interpreted as described in RFC 2119.

4.1 Guidelines

New implementations MUST be delivered as Composer packages. Such a package MUST provide an implementation
for one or several of the interfaces defined in the \fpoirotte\Cryptal\Implementers namespace.

It is RECOMMENDED that implementers always support as many algorithms recognized by the Cryptography Ab-
straction Layer as the underlying library and Cryptal permit when adding support for a feature.

The following sections describes how to turn a regular Composer package into a Cryptal plugin.

4.2 Creating a new plugin

4.2.1 Update your composer.json file

The basic skeleton for a plugin’s composer.json looks like this:

{
"name": "fpoirotte/cryptal-tomcrypt",
"type": "cryptal-plugin",
"description": "Plugin for Cryptal based on LibTomcrypt",
"license": "MIT",
"require": {

"php": ">=5.4",
"fpoirotte/cryptal": "*"

},

(continues on next page)

21

https://tools.ietf.org/html/rfc2119.html

cryptal, Release latest-e1b9d37

(continued from previous page)

"provide": {
"fpoirotte/cryptal-implementation": "*"

},
"autoload": {

"psr-4": {
"fpoirotte\\Cryptal\\Plugins\\Tomcrypt": "src/"

}
},
"extra": {

"cryptal.entrypoint": "fpoirotte\\Cryptal\\Plugins\\Tomcrypt\\Entrypoint"
}

}

There are four important things to note:

• The package’s type MUST be set to cryptal-plugin in order for the plugin to be properly recognized as
such.

• The package MUST contain a requirement on fpoirotte/cryptal as part of the require section, so
that the core files needed to load and use the plugin are available at runtime.

• To make it easier to find compatible plugins for Cryptal on Packagist, an implementation SHOULD provide
the fpoirotte/cryptal-implementation virtual package in its composer.json file.

The version number associated with the provided virtual package SHOULD be set to a sensible value.

• The package MUST declare a key named cryptal.entrypoint in the extra
section of their composer.json file, pointing to a class that implements the
fpoirotte\Cryptal\Implementers\PluginInterface interface.

If your plugin provides implementations for several features and you would like each feature to use its own entry
point, you may also use an array of entry points here in place of a string.

4.2.2 Write the code for the entry point

The entry point is responsible for registering any algorithm implemented by the plugin into Cryptal’s registry.

Assuming the plugin adds support for the AES cipher using 128 bit keys (AES-128) in Electronic Codebook (ECB)
mode, the MD5 hash algorithm and the HMAC message authentication code, an entry point may look like this:

namespace fpoirotte\Cryptal\Plugins\Tomcrypt;

use fpoirotte\Cryptal\Implementers\PluginInterface;
use fpoirotte\Cryptal\ImplementationTypeEnum;
use fpoirotte\Cryptal\CipherEnum;
use fpoirotte\Cryptal\ModeEnum;
use fpoirotte\Cryptal\HashEnum;
use fpoirotte\Cryptal\MacEnum;

class Entrypoint implements PluginInterface
{

public function registerAlgorithms(RegistryWrapper $registry)
{

// Declare support for AES-128 in ECB mode
$registry->addCipher(

'\\fpoirotte\\cryptal\\Plugins\\Tomcrypt\\Aes',
CipherEnum::CIPHER_AES_128(),

(continues on next page)

22 Chapter 4. Implementers

https://packagist.org/

cryptal, Release latest-e1b9d37

(continued from previous page)

ModeEnum::MODE_ECB(),
ImplementationTypeEnum::TYPE_COMPILED()

);

// Declare support for the MD5 message digest algorithm
$registry->addHash(

'\\fpoirotte\\cryptal\\Plugins\\Tomcrypt\\Md5',
HashEnum::HASH_MD5(),
ImplementationTypeEnum::TYPE_COMPILED()

);

// Declare support for the HMAC message authenticator algorithm
$registry->addMac(

'\\fpoirotte\\cryptal\\Plugins\\Tomcrypt\\Hmac',
MacEnum::MAC_HMAC(),
ImplementationTypeEnum::TYPE_COMPILED()

);
}

The RegistryWrapper provides 3 methods, meant to declare support for new ciphers (addCipher), hash algorithms
(addHash) and message authentication codes (addMac).

Each of these methods expects the full path to a class providing the algorithm as their first argument, followed by
Cryptal’s identifier for that algorithm and an identifier for the implementation type.

For ciphers, the algorithm identifier is made of two arguments:

• The cipher’s identifier itself (one of the values declared in the CipherEnum enumeration)

• The mode of operations which can be applied to this cipher (one of the values declared in the ModeEnum
enumeration)

For hash and MAC algorithms, just pass the algorithm’s identifier defined in HashEnum or MacEnum, respectively.

The implementation type SHOULD match the actual nature of the algorithm’s implementation:

• TYPE_ASSEMBLY() SHOULD be used when the underlying code is known to be optimized for speed/uses
assembly code.

• TYPE_COMPILED() SHOULD be used for other forms of compiled code, such as code from a PHP extension
coded in C or C++.

• TYPE_USERLAND() SHOULD be used for algorithms implemented using regular (userland) PHP code, as
opposed to code from a PHP extension.

Cryptal uses this information at runtime to determine the fastest/most secure implementation it can use.

4.3 Available plugins

You can browse the list of existing plugins for Cryptal on this page

Badges:

4.3. Available plugins 23

https://packagist.org/providers/fpoirotte/cryptal-implementation
http://travis-ci.org/fpoirotte/cryptal
https://coveralls.io/r/fpoirotte/cryptal?branch=master
https://php-eye.com/package/fpoirotte/cryptal

cryptal, Release latest-e1b9d37

24 Chapter 4. Implementers

Index

R
RFC

RFC 2119, 21

25

	Introduction
	Installation
	Choosing the plugin(s) to install
	Modes of operation
	Cipher algorithms
	Hashing algorithms
	Message authentication algorithms

	Installing the plugins

	Usage
	Encryption/decryption
	Using stream filters
	Using the registry

	Hashes (message digests)
	Using stream filters
	Using the registry

	Message Authentication Codes (MAC)
	Using stream filters
	Using the registry

	Miscelleanous features

	Implementers
	Guidelines
	Creating a new plugin
	Update your composer.json file
	Write the code for the entry point

	Available plugins

